EMBRYONIC FACTOR 19 encodes a pentatricopeptide repeat protein that is essential for the initiation of zygotic embryogenesis in Arabidopsis.

نویسندگان

  • Dali Yu
  • Li Jiang
  • Huaqin Gong
  • Chun-Ming Liu
چکیده

Early embryogenesis is the most fundamental developmental process in biology. Screening of ethyl methanesulfonate (EMS)-mutagenized populations of Arabidopsis thaliana led to the identification of a zygote-lethal mutant embryonic factor 19 (fac19) in which embryo development was arrested at the elongated zygote to octant stage. The number of endosperm nuclei decreased significantly in fac19 embryos. Genetic analysis showed fac19 was caused by a single recessive mutation with typical mendelian segregation, suggesting equal maternal and paternal contributions of FAC19 towards zygotic embryogenesis. Positional cloning showed that FAC19 encodes a putative mitochondrial protein with 16 conserved pentatricopeptide repeat (PPR) motifs. The fac19 mutation caused a conversion from hydrophilic serine located in a previously unknown domain to hydrophobic leucine. Crosses between FAC19/fac19 and the T-DNA insertion mutants in the same gene failed to complement the fac19 defects, confirming the identity of the gene. This study revealed the critical importance of a PPR protein-mediated mitochondrial function in early embryogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III.

Precise control of gene expression is critical for embryo development in both animals and plants. We report that Arabidopsis thaliana GLUTAMINE-RICH PROTEIN23 (GRP23) is a pentatricopeptide repeat (PPR) protein that functions as a potential regulator of gene expression during early embryogenesis in Arabidopsis. Loss-of-function mutations of GRP23 caused the arrest of early embryo development. T...

متن کامل

Arabidopsis GLUTAMINE-RICH PROTEIN23 Is Essential for Early Embryogenesis and Encodes a Novel Nuclear PPR Motif Protein That Interacts with RNA Polymerase II Subunit III W

Precise control of gene expression is critical for embryo development in both animals and plants. We report that Arabidopsis thaliana GLUTAMINE-RICH PROTEIN23 (GRP23) is a pentatricopeptide repeat (PPR) protein that functions as a potential regulator of gene expression during early embryogenesis in Arabidopsis. Loss-of-function mutations of GRP23 caused the arrest of early embryo development. T...

متن کامل

empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize.

The pentatricopeptide repeat (PPR) family represents one of the largest gene families in plants, with >440 members annotated in Arabidopsis thaliana. PPR proteins are thought to have a major role in the regulation of posttranscriptional processes in organelles. Recent studies have shown that Arabidopsis PPR proteins play an essential, nonredundant role during embryogenesis. Here, we demonstrate...

متن کامل

The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria

Gene expression in plant mitochondria involves a complex collaboration of transcription initiation and termination, as well as subsequent mRNA processing to produce mature mRNAs. In this study, we describe the function of the Arabidopsis mitochondrial stability factor 1 (MTSF1) gene and show that it encodes a pentatricopeptide repeat protein essential for the 3'-processing of mitochondrial nad4...

متن کامل

AGAMOUS-Like15 Promotes Somatic Embryogenesis in Arabidopsis and Soybean in Part by the Control of Ethylene Biosynthesis and Response1[C][W][OA]

Many of the regulatory processes occurring during plant embryogenesis are still unknown. Relatively few cells are involved, and they are embedded within maternal tissues, making this developmental phase difficult to study. Somatic embryogenesis is a more accessible system, and many important regulatory genes appear to function similar to zygotic development, making somatic embryogenesis a valua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of integrative plant biology

دوره 54 1  شماره 

صفحات  -

تاریخ انتشار 2012